Skip to main content

Transformation of Estrogens in Nitrifying Activated Sludge under Aerobic and Alternating Anoxic/Aerobic Conditions

Buy Article:

$9.50 plus tax (Refund Policy)

Or sign up for a free trial

Natural and synthetic estrogens are present in municipal wastewater treatment plants effluents. Biodegradation of estrogens, including the natural estrogens estrone (E1) and 17-beta-estradiol (E2), as well as the synthetic 17-alpha-ethinylestradiol (EE2), can occur during sewage treatment, particularly in activated sludge. Investigations of removal of estrogens in wastewater treatment plants, as well as batch experiments with activated sludge, have demonstrated the potential for conversion of E2 to E1 and subsequent removal of E1 and to a lesser extent EE2. The objective of this study was to assess the extent of transformation of E2 and EE2 by nitrifying activated sludge under aerobic, anoxic and alternating conditions, and evaluate potential relationships between availability of oxygen, nitrification rate and estrogen removal. The nitrifying biomass originated from laboratory sequencing batch reactors. For each batch experiment, two reactors were set up: aerobic and alternating aerobic/anoxic, which were then amended with E2 and EE2 from methanolic stock solutions at the same time as the addition of synthetic wastewater feed. E2 was readily converted to E1 in the activated sludge. The conversion was faster under aerobic (nitrifying) than anoxic (denitrifying) conditions. EE2 was persistent under anoxic conditions; whereas under aerobic nitrifying conditions the maximum observed level of its removal was 22%. During anoxic denitrifying conditions, E2 was converted to E1, and a metabolite consistent with 17-alpha-estradiol transiently accumulated, and was subsequently removed when the reactor was aerated. The total removal of estrogens was similar in aerobic and alternating reactors. Higher rates of E1 and EE2 removal were associated with higher nitrification rates, which supports the contention that the nitrifying biomass was responsible for their removal.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2006-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more