Skip to main content

What are Distributed States and when are they Important? New Strategies to Improve EBPR Performance

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

or click here to sign up for a free trial


Computer simulation of activated sludge processes is a critical tool for design, operation, and troubleshooting, but simulating enhanced biological phosphorus removal (EBPR) systems has proven to be particularly challenging. This may be due in part to uncertainties in biokinetic models, but new research suggests it may also be due to deficiencies in conventional “lumped state” approaches to simulation, which model bulk concentrations of the polyphosphate accumulating organisms (PAOs) responsible for EBPR, as well as their microbial storage product (polyphosphate, glycogen, and polyhydroxyalkanoates) contents. A recently developed, alternative method for modeling biological treatment systems is the “distributed state” approach, which models individual bacteria as they move through a biological reactor system, rather than bulk concentrations. This approach predicts that PAO states (their microbial storage product contents) tend to diverge when reactors are completely mixed, and this can produce very different outcomes than those predicted by the conventional lumped approach. A MATLAB-based distributed state program (DisSimulator 2.0) was applied to an A2O system and it was determined that distributed states tend to become more important with (1) shorter internal recycle ratios and (2) longer reactor hydraulic residence times. Consequently errors resulting from relying on lumped simulations are greatest in these conditions. This work illustrates that there appear to be interesting process phenomena related to changing state distributions that apparently cannot be accounted for by lumped simulations. These insights suggest that the continued advancement of the distributed simulator approach has the potential to improve design and operation of biological nutrient removal systems.

Document Type: Research Article


Publication date: January 1, 2006

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access.
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more