Skip to main content

The Use of Oxidation-Reduction Potential as a Means of Controlling Effluent Ammonia Concentration in an Extended Aeration Activated Sludge System

Buy Article:

$17.50 plus tax (Refund Policy)

Or sign up for a free trial

Abstract:

This study developed a strategy to control effluent ammonia from an activated sludge system, using oxidation-reduction potential. By controlling effluent ammonia concentrations, disinfection of treated wastewater is more cost effectively achieved by chloramination rather than break-point chlorination. The system under consideration was an extended aeration oxidation ditch. The study takes into account the concepts of nitrification and denitrification, as well as intrinsic characteristics of oxidation-reduction potential, while also keeping ease of operation in mind. Data were gathered by varying the rate of aeration of the basin from two extremes, while collecting samples along the timeline. Oxidation-reduction potential, dissolved oxygen concentration and ammonia concentration data were collected for evaluation. Using these data a preliminary control strategy was developed. The control strategy focused on operating the system in a continuous flow and varying aeration scenario. Two attempts to control the oxidation ditch were made. Using oxidation-reduction potential as an indicator, adjustments were made to the aerator controls in order to accommodate changes in organic loading, and maintain a constant effluent ammonia concentration. The first attempt was met with success and used to fine tune the strategy for the second attempt. The second attempt experienced more success than the first in controlling effluent ammonia concentrations, thus confirming the original hypothesis of the study.

Document Type: Research Article

DOI: http://dx.doi.org/10.2175/193864706783775603

Publication date: January 1, 2006

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access.
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • ingentaconnect is not responsible for the content or availability of external websites
wef/wefproc/2006/00002006/00000006/art00028
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more