Skip to main content

Green Roof Media Selection for the Minimization of Pollutant Loadings in Roof Runoff

Buy Article:

$17.50 plus tax (Refund Policy)

Or sign up for a free trial

Stormwater is a leading cause of water quality impairment in estuaries like the Chesapeake Bay. Green roofs are a potential best management practice for urban areas where land for traditional stormwater practices is unavailable. They are aesthetically pleasing, with excellent water retention ability. However, it is unknown how effective they are at treating stormwater. Typical media installations are shallow-depth (2 to 6 inches), and the media have a low organic and a high mineral content. Optimum media must meet the following objectives: lightweight, capable of supporting plants, and able to retain pollutants. The two primary research objectives are the following: 1. To develop an effective media for green roofs that will improve roof runoff quality while maintaining the known water retention benefits of green roofs, and 2. To demonstrate that green roofing will generate lesser pollutant loadings into urban runoff than traditional roofing materials. In Phase I (currently ongoing), several green roof media (formulated from commonlyused expanded minerals, stormwater filter media, and organic matter) are being evaluated for their abilities to retain the pollutants from a synthetic acid rain. The samples are being analyzed for metals, nutrients, pH, and conductivity. The hypothesis is that one media will be “better” at pollutant removal and permanent retention. In Phase II, once the optimized media has been selected, it will be field-tested on a green roof. The water quality of the runoff from the green roof will be compared with the runoff quality from a traditional roof. Field testing will address two objectives: 1. The media is capable of supporting the green roof plants, and 2. The anticipated removals (including water retention) are actually seen in the field. Phase I results to date on the mineral portion of the future media mix demonstrates all media were able to neutralize the acid rain. Comparing the media for pollutant removal and retention, the expanded shale was best able to retain phosphorus, ammonia, and metals from the synthetic acid rain.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2006-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more