Skip to main content


Buy Article:

$9.50 plus tax (Refund Policy)

Or sign up for a free trial

In recent years publicly owned treatment works (POTWs) have increasingly turned to thermal drying to treat municipal biosolids. Thermal drying significantly reduces the mass and volume of the biosolids which must be handled and typically produces a Class A product suitable for beneficial reuse. However, thermal drying systems can be sensitive to changes in operating conditions. If the percent solids of either the feed to the dryer or the material inside the dryer move outside of acceptable ranges, dryer process malfunction can result, causing significant operational and maintenance problems. Therefore, establishing acceptable ranges of the percent solids of the material and monitoring those ranges during operation is critical to establishing smooth drying system operation.

This paper examines the commissioning and optimization of the thermal drying system installed as part of the Alternative Solids Project (ASP) at the Morris Forman Wastewater Treatment Plant (WWTP), which is owned and operated by the Louisville and Jefferson County Metropolitan Sewer District. During commissioning of one of the largest drying systems in the country, operational difficulties were encountered for several reasons. Some of the difficulties were the normal process of learning acceptable operating conditions through trial and error, while others were related to temporary upstream facilities, which resulted in inconsistent feed characteristics to the dryers and undigested sludge to process. To address process malfunctions, a set of optimization procedures were established to monitor solids concentrations of the feed to the dryer and at several internal dryer locations. Procedures were also established to correlate the solids concentrations data with process malfunctions to establish acceptable operating ranges for each of the locations monitored. The optimization plan was implemented and proved to be a successful tool in predicting when process malfunctions would occur. Use of the plan has significantly reduced the number of process malfunctions, which in turn has increased the availability of the dryers and reduced maintenance and landfill costs.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2005-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more