Skip to main content

Dyed Microspheres for Quantification of UV Dose Distributions: Photochemical Reactor Characterization by Lagrangian Actinometry

Buy Article:

$9.50 plus tax (Refund Policy)

Or sign up for a free trial

Lagrangian actinometry represents a new method of photochemical reactor characterization. The method is based on an application of dyed microspheres, which were developed by attachment of (E)-5-[2-(methoxycarbonyl)ethenyl]cytidine (hereafter referred to as S) to polystyrene microspheres. S is a non-fluorescent molecule that when subjected to UV irradiation yields a single product, 3-β-D- ribofuranosyl-2,7-dioxopyrido[2,3-d]pyrimidine (hereafter referred to as P), which displays a strong fluorescence signal. Dyed microspheres were subjected to UV irradiation under a collimated-beam and using a single-lamp (low pressure Hg), continuous-flow reactor. In parallel with these experiments, a biodosimetry experiment was conducted using Bacillus subtilis spores as the challenge organism.

Particle-specific fluorescence intensity measurements were conducted on samples from the collimated-beam experiments and the flow-through reactor experiments by flow cytometry. Estimates of the dose distribution delivered by the flow-through reactor for each operating condition were developed by deconvolution of data resulting from flow cytometry analysis of these samples.

In conjunction with these experiments, a numerical model was developed to simulate the behavior of the reactor system. A commercially available computational fluid dynamics package was used to simulate the flow field, while line-source integration was used to simulate the irradiance field. A particle-tracking algorithm was employed to interrogate the flow and intensity field simulations for purposes of developing particle-specific (Lagrangian) estimates of dose delivery.

Dose distribution estimates from the microspheres assays and the numerical simulations were combined with the measured dose-response behavior of B. subtilis spores to yield estimates of spore inactivation in the flow-through experiments. For the range of operating conditions used in these experiments, predictions of spore inactivation based on dose distribution estimates from both methods were in good agreement with each other, and with the measured spore inactivation behavior.

Lagrangian actinometry is capable of yielding accurate, detailed measurements of dose delivery by continuous-flow UV systems. This method represents a substantial improvement over existing experiment-based methods of UV reactor characterization (e.g., biodosimetry) in that it yields a measurement of the dose distribution for a given operating condition. This method also represents an improvement over existing methods for validation of numerical simulations. Specifically, because this method yields a measurement of the dose distribution, it is possible to compare these measurements with predicted dose distributions from the numerical simulation. When used in combination with conventional biodosimetry, the analysis of a reactor system becomes extremely robust.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2005-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more