Skip to main content

APPLICABILITY OF AN EXTANT BATCH RESPIROMETRIC ASSAY IN DESCRIBING DYNAMICS OF AMMONIA AND NITRITE OXIDATION IN A NITRIFYING BIOREACTOR

Buy Article:

$9.50 plus tax (Refund Policy)

Or sign up for a free trial

Several techniques have been proposed for biokinetic estimation of nitrification. Recently, an extant respirometric assay has been presented that yields kinetic parameters for both nitrification steps with minimal physiological change to the microorganisms during the assay. Herein, the ability of biokinetic parameter estimates from the extant respirometric assay to adequately describe concurrently obtained NH4 +-N and NO2 -N substrate depletion profiles is evaluated. Based on our results, in general, the substrate depletion profiles resulted in a higher estimate of the maximum specific growth rate coefficient, μmax for both NH4 +-N to NO2 -N oxidation and NO2 -N to NO3 -N oxidation compared to estimates from the extant respirograms. The trends in the kinetic parameter estimates from the different biokinetic estimation techniques are paralleled in the nature of substrate depletion profiles obtained from best-fit parameters. Based on a visual inspection, in general, best-fit parameters from optimally designed complete respirograms provided a better description of the substrate depletion profiles than estimates from isolated respirograms. Nevertheless, the sum of the squared errors for the best-fit respirometry based parameters was outside the 95% joint confidence interval computed for the best-fit substrate depletion based parameters. Notwithstanding the difference in kinetic parameter estimates determined in this study, the different biokinetic estimation techniques still are close to estimates reported in literature. Additional parameter identifiability and sensitivity analysis of parameters from substrate depletion assays revealed high precision of parameters and high parameter correlation. Although biokinetic estimation via automated extant respirometry is far more facile than via manual substrate depletion measurements, additional sensitivity analyses are needed to test the impact of differences in the resulting parameter values on continuous reactor performance.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2004-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more