Skip to main content


The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

or click here to sign up for a free trial


Several techniques have been proposed for biokinetic estimation of nitrification. Recently, an extant respirometric assay has been presented that yields kinetic parameters for both nitrification steps with minimal physiological change to the microorganisms during the assay. Herein, the ability of biokinetic parameter estimates from the extant respirometric assay to adequately describe concurrently obtained NH4 +-N and NO2 -N substrate depletion profiles is evaluated. Based on our results, in general, the substrate depletion profiles resulted in a higher estimate of the maximum specific growth rate coefficient, μmax for both NH4 +-N to NO2 -N oxidation and NO2 -N to NO3 -N oxidation compared to estimates from the extant respirograms. The trends in the kinetic parameter estimates from the different biokinetic estimation techniques are paralleled in the nature of substrate depletion profiles obtained from best-fit parameters. Based on a visual inspection, in general, best-fit parameters from optimally designed complete respirograms provided a better description of the substrate depletion profiles than estimates from isolated respirograms. Nevertheless, the sum of the squared errors for the best-fit respirometry based parameters was outside the 95% joint confidence interval computed for the best-fit substrate depletion based parameters. Notwithstanding the difference in kinetic parameter estimates determined in this study, the different biokinetic estimation techniques still are close to estimates reported in literature. Additional parameter identifiability and sensitivity analysis of parameters from substrate depletion assays revealed high precision of parameters and high parameter correlation. Although biokinetic estimation via automated extant respirometry is far more facile than via manual substrate depletion measurements, additional sensitivity analyses are needed to test the impact of differences in the resulting parameter values on continuous reactor performance.

Document Type: Research Article


Publication date: January 1, 2004

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access.
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more