Skip to main content

ASSESSING THE EFFECTIVENESS OF SEWER HEADSPACE FOUL AIR EXTRACTION

Buy Article:

$17.50 plus tax (Refund Policy)

Or sign up for a free trial

Several large diameter interceptors in the metropolitan Phoenix area exhibit hydrogen sulfide concentrations in excess of 100 parts per million (ppm) in the headspace of the sewer. Additionally, wastewater velocity is relatively fast, causing liquid-induced airflow and air pressurization in the sewer headspace. Chemical odor control treatments and sealing manhole covers has only been partially effective in controlling fugitive odor emissions into commercial and residential areas near these interceptors.

The Sub-Regional Operating Group (SROG – representing five cities in the Phoenix area) initiated a project to test air extraction from the sewer headspace with the long-range goal of installing several air treatment systems along odorous interceptors. The foul air extraction tests were conducted with a mobile, trailer-mounted fan and variable speed motor, with a flexible duct hose connected to a sheetmetal manhole adapter. Tests were conducted on three sections of interceptor ranging from 42- to 90-inch diameter. Airflow extracted from the sewers ranged from 2,700 cubic feet per minute (cfm) to 5,200 cfm.

The sewers tested typically exhibit pressures between +0.10 and +0.25 inches water column (w.c). The extraction tests successfully reversed this pressure so that sewer headspaces were under negative pressures ranging from −0.03 to -.80 inches w.c. The magnitude of negative pressure diminished as distance from the foul air extraction point increased. The distance from the extraction point in which sewer headspace pressure was influenced was typically about 5 miles. However, major sewer junction structures limited the extent of pressure influence.

Hydrogen sulfide (H2S) concentrations were continuously monitored and data-logged before, during, and after the extraction tests. This data indicated that H2S concentrations were routinely between 50 and 200 parts per million (ppm) and were not reduced significantly by forced ventilation of the sewer headspace.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2002-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more