Skip to main content


The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

or click here to sign up for a free trial


In their recent report on the USEPA's total maximum daily load (TMDL) program, a panel of the National Research Council (NRC) endorsed the program and stated that the science was sufficient for the program to move forward. However, the panel also acknowledged the limits of scientific analysis, stating that “(s)cientific uncertainty is a reality within all water quality programs, including the TMDL program, that cannot be entirely eliminated.” The magnitude and consequence of scientific uncertainty is particularly evident in the water quality models necessary for TMDL forecasting and development.

To address the possibility that the often-substantial uncertainty associated with water quality model forecasts may result in implementation of inefficient and flawed TMDL plans, the NRC TMDL panel recommended that an iterative implementation strategy, termed “adaptive implementation,” be employed. In brief, adaptive implementation, or “learning by doing,” augments initial model forecasts of TMDLs with post-implementation monitoring that provides an assessment of actual response by the aquatic system of interest. The need for integrated TMDL modeling and monitoring approaches is expressed in the following recommendation by the NRC panel:

In order to carry out adaptive implementation, EPA needs to foster the use of strategies that combine monitoring and modeling and expedite TMDL development (NRC Report, page 10).

Fortunately, a number of analytic approaches already exist to perform the analysis for an adaptive implementation of a TMDL. The approach is essentially Bayesian although variations of the Bayesian theme have existed and been implemented for years (e.g., the Kalman filter and data assimilation). In basic terms, the initial TMDL model forecast serves as the Bayesian prior, the post-implementation monitoring data serve as the sample information (the likelihood), and the posterior probability results from a pooling of the evidence and provides the basis for a revised (and improved TMDL). A simple example of a Bayesian model for adaptive implementation is applied to a lake eutrophication assessment problem to illustrate the process. In addition, a nitrogen TMDL recently developed for the Neuse Estuary in North Carolina is examined for adaptive implementation. These examples illustrate the feasibility of technical assessments for adaptive implementation, and they also serve to identify some scientific and analytic issues that need to be addressed to facilitate effective use of modeling-monitoring integration for adaptive implementation.

Document Type: Research Article


Publication date: January 1, 2002

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access.
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more