Skip to main content

ADAPTIVE IMPLEMENTATION OF TMDLS USING BAYESIAN ANALYSIS

Buy Article:

$9.50 plus tax (Refund Policy)

Or sign up for a free trial

In their recent report on the USEPA's total maximum daily load (TMDL) program, a panel of the National Research Council (NRC) endorsed the program and stated that the science was sufficient for the program to move forward. However, the panel also acknowledged the limits of scientific analysis, stating that “(s)cientific uncertainty is a reality within all water quality programs, including the TMDL program, that cannot be entirely eliminated.” The magnitude and consequence of scientific uncertainty is particularly evident in the water quality models necessary for TMDL forecasting and development.

To address the possibility that the often-substantial uncertainty associated with water quality model forecasts may result in implementation of inefficient and flawed TMDL plans, the NRC TMDL panel recommended that an iterative implementation strategy, termed “adaptive implementation,” be employed. In brief, adaptive implementation, or “learning by doing,” augments initial model forecasts of TMDLs with post-implementation monitoring that provides an assessment of actual response by the aquatic system of interest. The need for integrated TMDL modeling and monitoring approaches is expressed in the following recommendation by the NRC panel:

In order to carry out adaptive implementation, EPA needs to foster the use of strategies that combine monitoring and modeling and expedite TMDL development (NRC Report, page 10).

Fortunately, a number of analytic approaches already exist to perform the analysis for an adaptive implementation of a TMDL. The approach is essentially Bayesian although variations of the Bayesian theme have existed and been implemented for years (e.g., the Kalman filter and data assimilation). In basic terms, the initial TMDL model forecast serves as the Bayesian prior, the post-implementation monitoring data serve as the sample information (the likelihood), and the posterior probability results from a pooling of the evidence and provides the basis for a revised (and improved TMDL). A simple example of a Bayesian model for adaptive implementation is applied to a lake eutrophication assessment problem to illustrate the process. In addition, a nitrogen TMDL recently developed for the Neuse Estuary in North Carolina is examined for adaptive implementation. These examples illustrate the feasibility of technical assessments for adaptive implementation, and they also serve to identify some scientific and analytic issues that need to be addressed to facilitate effective use of modeling-monitoring integration for adaptive implementation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2002-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more