Skip to main content

LESSONS LEARNED FROM THE DESIGN AND STARTUP OF AN ADVANCED INDUSTRIAL WASTEWWATER RECLAMATION SYSTEM

Buy Article:

$9.50 plus tax (Refund Policy)

Or sign up for a free trial

This paper describes the pilot testing and implementation of a major advanced wastewater reclamation project to recover secondary effluent from the biological organic wastewater treatment system (OWWTS) and cooling tower blowdown (CTB) for reuse in a large petrochemical plant. The treatment processes used include chemical oxidation by sodium hypochlorite, dual media filtration, granular activated carbon adsorption, ultrafiltration (UF), ultraviolet (UV) disinfection, cartridge filtration, reverse osmosis (RO), and degasification. The reclaimed water, which is quite pure, is used as feed water for the petrochemical plant's ion exchange-based deionization (DI) system. Using this water as DI system feed saves more than 80 percent of the expensive DI system regeneration cost and drastically reduces water purchase cost and wastewater discharge fees. The treatment system was tested on a pilot-scale basis (110 m3/d) for nearly 18 months. Testing at various flux rates for UF/RO and an accelerated biofouling test for the hollow-fiber UF membranes were conducted. With excellent pretreatment, the thin film composite (TFC) polymide RO membranes were relatively clean and non-fouling after more than 2,000 hours of operation without the need for chemical cleaning. A total overall water recovery of 73.6 percent was achieved consistently in the pilot plant. The economic analysis indicated that a payback could be obtained in 4 years. A full-scale plant treating an influent blended flow of 9,000 m3/d of OWWTS effluent and CTB has been constructed at the petrochemical plant. The design/build project took approximately 2 years to complete. However, the startup took much longer than anticipated due to some deficiencies in design and construction, and operational oversights. This paper discusses some of the lessons learned from the implementation of the full-scale project.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2000-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more