Skip to main content

MATHEMATICAL MODELING OF UNSATURATED FLOW AND TRANSPORT IN SOIL–BASED WASTEWATER TREATMENT SYSTEMS

Buy Article:

$9.50 plus tax (Refund Policy)

Or sign up for a free trial

A numerical model is used to investigate the impact of the infiltrative-surface crust on the hydraulictreatment volume and on unsaturated transport and transformation of orthophosphate and ammonium in soil-based wastewater treatment systems (SWTS). The simulated SWTS is a subsurface trench underlain by a natural soil. Crusts at the base and on the sidewall of the trench are incorporated in the model. Unsaturated water-flow and contaminant-transport parameters are selected from the ranges of values measured in field and laboratory experiments that have been reported in the literature. The process of contaminant sorption to soil is included for both contaminants. Biochemical ammonium transformation and phosphate precipitation are simulated assuming first-order kinetics. The simulations illustrate that the presence of an infiltrative-surface crust greatly improves treatment of orthophosphate and ammonium. The infiltrative crust causes reduced infiltration velocities and a somewhat larger hydraulic-treatment volume. The slower velocities result in longer hydraulic residence times and thus allow more time for biochemical removal. Increased hydraulic volumes are due mainly to infiltration through the sidewall crust in mature systems. Slower contaminant velocities due to sorption also improve biochemical treatment. The impact of two septic-tank effluent (STE) -application methods on treatment is evaluated for an uncrusted system. Uniform application across the infiltration trench resulted in improved treatment due to a larger overall hydraulic residence time compared to a focused application in the center area of the trench. This research illustrates that numerical models are useful for gaining a better understanding of crust development and the associated impact on contaminant treatment.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2000

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more