Skip to main content

Simulation of laser-focused atomic deposition for nanostructure fabrication

Buy Article:

$18.71 plus tax (Refund Policy)

We analyze the two-level atom focusing in a Gaussian standing wave laser field from the perspective of both classical mechanics and wave mechanics. The effects of source imperfection such as velocity spread and beam spread on the feature width are analyzed by numerically integrating the classical equation of atomic motion. The atomic flux distributions during its propagation in a laser field are calculated based on the Monte Carlo scheme and the trajectory tracing method, and results have shown that the focus depth of atom lens for real atomic source is longer than that for perfect source. In the absence of source imperfection, the contribution of diffractive aberration originating from the wave nature of the atom to broadening of feature width is larger than that of spherical aberration. Feature separation can be reduced by changing the detuning of the standing wave laser field from blue to red halfway through the deposition time.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

Publication date: 2004-09-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more