Skip to main content

Slightly dispersive white-light spectral interferometry to measure distances and displacements

Buy Article:

$28.45 plus tax (Refund Policy)


A new spectral-domain interferometric technique of measuring distances and displacements is realized when the effect of low dispersion in a Michelson interferometer, which comprises two coated plates of a beam splitter and a compensator, is known and the spectral interference fringes are resolved over a wide wavelength range. First, processing the recorded spectral interferograms by an adequate method, the unmodulated spectrum, the spectral fringe visibility function and the unwrapped phase function are obtained. Then, knowing the dispersion relation for the fused-silica plates, the ambiguity of the unwrapped phase function is removed and the thickness of fused silica and the nonlinear phase function due to the effect of the coatings are determined by using a new procedure. It is based on the linear dependence of the overall optical path difference between interferometer beams on the refractive index of fused silica. Once the thickness and the nonlinear phase function are known, the positions of the interferometer mirror are determined precisely by a least-squares fitting of the theoretical spectral interferograms to the recorded ones.

Document Type: Research Article


Affiliations: 1: Institute of Physics, Silesian University at Opava, Bezručovo nám. 13, 746 01 Opava, Czech Republic 2: Institute of Fine Mechanics and Optics, Technical University, 14 Sablinskaya st., 197101 Saint-Petersburg, Russia

Publication date: December 1, 2003

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more