Skip to main content

The ear region of Latimeria chalumnae: functional and evolutionary implications

Buy Article:

$26.36 plus tax (Refund Policy)

The anatomy of Latimeria chalumnae has figured prominently in discussions about tetrapod origins. While the gross anatomy of Latimeria is well documented, relatively little is known about its otic anatomy and ontogeny. To examine the inner ear and the otoccipital part of the cranium, a serial-sectioned juvenile coelacanth was studied in detail and a three-dimensional reconstruction was made.

The ear of Latimeria shows a derived condition compared to other basal sarcopterygians in having a connection between left and right labyrinths. This canalis communicans is perilymphatic in nature and originates at the transition point of the saccule and the lagena deep in the inner ear, where a peculiar sense end organ can be found.

In most gnathostomes the inner ears are clearly separated from each other. A connection occurs in some fishes, e.g. within the Ostariophysi. In the sarcopterygian lineage no connections between the inner ears are known except in the Actinistia. Some fossil actinistians show a posteriorly directed duct lying between the foramen magnum and the notochordal canal, similar to the condition in the ear of Latimeria, so this derived character complex probably developed early in actinistian history.

Because some features of the inner ear of Latimeria have been described as having tetrapod affinities, the problem of hearing and the anatomy of the otical complex in the living coelacanth has been closely connected to the question of early tetrapod evolution. It was assumed in the past that the structure found in Latimeria could exemplify a transitional stage in otic evolution between the fishlike sarcopterygians and the first tetrapods in a functional or even phylogenetic way.

Here the possibility is considered that the canalis communicans does not possess any auditory function but rather is involved in sensing pressure changes during movements involving the intracranial joint. Earlier hypotheses of a putative tympanic ear are refuted.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Department of Systematic Zoology, Zoological Institute, University of Tübingen, Germany

Publication date: 2003-10-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more