Skip to main content

Free Content Effects of Reef Size on Colonization and Assemblage Structure of Fishes at Artificial Reefs Off Southeastern Florida, U.S.A.

Download Article:
 Download
(PDF 2,147.5 kb)
 

Abstract:

Fifty standard concrete modules were deployed on a sand bottom to make 16 replicated artificial reefs of 1 to 8 modules┬Ěreef 1. Fish assemblages were monitored for species composition, abundance, and fish size, and compared to two natural control sites. We censused 127 species (107,168 fishes) from artificial reefs, 93 species (16,495 fishes) on natural control reefs, and 17 species (1,040 fishes) on sand bottom from July 1987 to March 1989. Artificial reefs supported a diverse, abundant, and dynamic assemblage of fishes that were a mixture of species found in surrounding sand and natural reef habitats. Colonization (number of species, individuals, and biomass) was very rapid. Abundance varied seasonally with recruitment episodes tending to occur in the spring and summer followed by losses for the remainder of the year. Assemblages were quite variable on and between similar sized reefs. Fish and biomass densities were higher at artificial reefs than on sand and natural reefs. Resident fish biomass varied less than resident fish numbers, because individual growth compensated for mortality after recruitment episodes. Reef size significantly influenced total numbers of species, individuals, and biomass. Smaller reefs had greater fish density while larger reefs had higher biomass density from larger, but fewer, individuals. Multiple small reefs supported more individuals and more species than one large reef of equal material. Fishes recruited by larval settlement accounted for 36% of the total resident abundance but only 2% of total biomass. As reef size increased, older juvenile or adult colonists comprised a greater percentage of total biomass (94% to 99%). Assemblage importance percentages (based on abundance, biomass, and frequency) were divided between residents (64%), visitors (20%), and transients (16%). Economically important species comprised 61% of the biomass and 55% of the individuals, among which settlers accounted for 94.3% of individuals but only 5.7% of their total biomass. The most highly valued species were visitors or residents that utilized the reefs after first settling elsewhere. These results showed that data on artificial reef assemblages based solely on the abundance of resident species are biased. Data on visitors, transients, frequency-of-occurrence, and biomass are important in evaluating bias. Results provided a partial test and support for a model predicting the importance of attraction over production for artificial reefs located in areas with high reef availability.

Document Type: Research Article

Publication date: September 1, 1994

More about this publication?
  • The Bulletin of Marine Science is dedicated to the dissemination of high quality research from the world's oceans. All aspects of marine science are treated by the Bulletin of Marine Science, including papers in marine biology, biological oceanography, fisheries, marine affairs, applied marine physics, marine geology and geophysics, marine and atmospheric chemistry, and meteorology and physical oceanography.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
umrsmas/bullmar/1994/00000055/F0020002/art00042
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more