Skip to main content

Free Content A Reproductive-Resting Stage in an Harpacticoid Copepod, and the Significance of Genetically Based Differences Among Populations

Download Article:
(PDF 821.439453125 kb)


Dormancy is an important life-history strategy which allows copepods to increase their fitness by delaying growth and reproduction until harsh environmental conditions have ameliorated. For marine species, the primary strategies identified to date include the production of dormant eggs by shallow-water species, and copepodite overwintering in deep-water species. Herein, we describe a third strategy in which fertilized adult females enter a “reproductive-resting” stage during the late fall that allows them to overwinter and provide a first source of spring naupliar recruitment. This strategy has been observed in the estuarine copepod Coullana canadensis, but may also occur in other species. Laboratory studies indicate that daylength and temperature are the environmental cues that induce the developing female copepodite to switch between active reproduction and reproductive-resting stage. In Maine populations, daylengths equal to 14 h induce >90% of the females to reduce development rate and accumulate lipid before maturation and mating. The resulting females, however, do not develop ova regardless of food level. A similar reproductive-resting stage is triggered at daylengths <14 h in animals collected from Maryland. Transition from reproductive-resting stage to active ova production may be triggered in both populations by increased photoperiod and/or dramatically increased temperature. Cross breeding experiments indicate that the daylength triggered switch to reproductive-resting is under tight genetic control. Daylength likely serves as a critical cue for all populations in differentiating between the onset of harsh (i.e., winter) and favorable (i.e., spring) environmental conditions. At these times water temperatures are similar, but daylengths are different. Population differences in the daylength necessary to trigger the reproductive-resting strategy likely reflect latitudinal variation in the period over which environmental conditions are conducive to population growth.

Document Type: Research Article

Publication date: 1993-07-01

More about this publication?
  • The Bulletin of Marine Science is dedicated to the dissemination of high quality research from the world's oceans. All aspects of marine science are treated by the Bulletin of Marine Science, including papers in marine biology, biological oceanography, fisheries, marine affairs, applied marine physics, marine geology and geophysics, marine and atmospheric chemistry, and meteorology and physical oceanography.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more