Skip to main content

Open Access Toughening effect of bamboo flour /polypropylene foamed composite

Download Article:
(PDF 2039.3310546875 kb)


Abstract: In order to make full use of bamboo resources in China and reduce white pollution, save fossil energy, the foamed composite of 54 wt% PP and 13 wt% HMSPP containing 33 wt% bamboo powder and 1% modified azodicarbonamide (AC) foaming agent blends was prepared by injection molding. Meanwhile, in order to substitute for polypropylene(PP) applied to automotive interior parts and thus broaden the application fields of wood-plastic composite, the bamboo powder/polypropylene foamed composites toughened by polyethylene octane elastomer (POE) and maleic anhydride grafted polyolefin elastomer (POE-g-MAH) were researched. Effects of the two toughen fillers on mechanical properties including bending, tensile and impact strengths were studied and the impact fractured surfaces of non-toughened and toughened composites were investigated by environmental scanning electronic microscopy micrograph (ESEM). The rheological behavior of composites with respect to frequency sweep ranging from 0.01 Hz to 100 Hz at 180 was carried out. The results showed that the tensile and bending strengths were reduced slightly and notched impact strength of composites was improved significantly with the increase of toughen fillers content. The optimum amounts of POE and POE-g-MAH were 15% and 8% respectively. The tensile strength of 15% POE toughening composite was unable to meet the standard of automotive interior parts, although its notched impact strength was increased from 6.30 kJ/m2 to 7.65 kJ/m2. The 8% POE-g-MAH toughening composite could well be applied to automotive interior parts and its bending strength, bending modulus and tensile strength of 37.5 MPa, 2.69 GPa and 21.02 MPa respectively, which was reduced by 1.2%~6.9%, while the notched impact strength was 8.55 kJ/m2, which was increased by 35.7% compared with the non-toughened composite. ESEM observation of the impact fracture morphology indicated that the fracture mode of toughened composite transited into ductile fracture. The frequency sweep results showed that the effect of POE on the rheological behavior was relatively smaller than that of POE-g-MAH. The storage modulus and complex viscosity of composite toughened by POE-g-MAH were increased and the "second platform" phenomenon was more evident.

Keywords: POE; POE-g-MAH; bamboo flour; composite materials; polypropylene; rheology; toughening

Document Type: Research Article

Publication date: 2013-01-15

More about this publication?
  • Transations of the Chinese Society of Agricultural Engineering(TCSAE), founded in 1985, is sponsored by the Chinese Chemical Society. TCSAE has been indexed by EI Compendex, CAB Inti, CSA. TCSAE is devoted to reporting the academic developments of Agricultural Engineering mainly in China and some developments from abroad. The primary topics that we consider are the following: comprehensive research, agricultural equipment and mechanization, soil and water engineering, agricultural information and electrical technologies, agricultural bioenvironmental and energy engineering, land consolidation and rehabilitation engineering, agricultural produce processing engineering.

  • Editorial Board
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more