Skip to main content

Open Access Influence of flow velocity circulation at guide vane outlet of axial-flow pump on hydraulic loss in outlet conduit

In order to study influence of the velocity circulation at the guide vane outlet on the hydraulic performance of outlet conduit for a large pump system quantitatively, the methods to calculate velocity circulation and to measure the average angular velocity for the flow at the guide vane outlet of the pump system were put forwardthe influence of circulation on the hydraulic losses of both siphon and straight outlet conduit were studied numerically and experimentally. The results indicated that the hydraulic loss of the outlet conduit was obviously influenced by the circulation at the guide vane outlet. There was an optimum circulation for the hydraulic loss of the outlet conduit to be minimized, the optimum circulation for siphon and straight outlet conduit was 0.972 and 1.308 m2/s respectively. The hydraulic losses calculated of the siphon and straight conduit under the condition of the optimal circulation were respectively lower 0.126 and 0.180 m than those under the condition of zero circulation. This study above could be helpful to optimal hydraulic design both for outlet conduit and guide vane of an axial-flow pump.

Keywords: axial-flow pump; circulation; guide vane outlet; hydraulic loss; numerical methods; optimization; outlet conduit; pumps

Document Type: Research Article

Publication date: 01 January 2012

More about this publication?
  • Transations of the Chinese Society of Agricultural Engineering(TCSAE), founded in 1985, is sponsored by the Chinese Chemical Society. TCSAE has been indexed by EI Compendex, CAB Inti, CSA. TCSAE is devoted to reporting the academic developments of Agricultural Engineering mainly in China and some developments from abroad. The primary topics that we consider are the following: comprehensive research, agricultural equipment and mechanization, soil and water engineering, agricultural information and electrical technologies, agricultural bioenvironmental and energy engineering, land consolidation and rehabilitation engineering, agricultural produce processing engineering.

  • Editorial Board
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content