Skip to main content

Improving roll stability of articulated heavy vehicles using active semi-trailer steering

Buy Article:

$60.90 plus tax (Refund Policy)

Abstract:

This paper discusses an optimal linear quadratic control algorithm to improve the roll stability of a tractor semi-trailer using active semi-trailer steering. The controller minimises a combination of the path-tracking deviation of the trailer rear end relative to the path of the hitch point (5th wheel) and the lateral acceleration of trailer centre of gravity (CoG). First a linear vehicle model of tractor semi-trailer is constructed. Then a 'virtual driver' model for trailer steering control is introduced to minimise the path-tracking deviation of trailer rear end. The lateral acceleration of trailer CoG is included as a second objective of the optimal controller so as to improve roll stability. A Kalman filter with linear vehicle model is used to estimate unknown vehicle states, needed by the controller. Simulation results show that optimal control of semi-trailer steering could improve the roll stability significantly during transient manoeuvres while keeping the path-tracking deviation of trailer rear end within an acceptable range.

Keywords: active trailer steering; path following; roll stability; virtual driver steering

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/00423110801958576

Affiliations: Engineering Department, Cambridge University, Cambridge, UK

Publication date: September 1, 2008

tandf/vesd/2008/00000046/A00101s1/art00030
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more