Skip to main content

Human driving data-based design of a vehicle adaptive cruise control algorithm

Buy Article:

$55.00 plus tax (Refund Policy)

This paper presents a vehicle adaptive cruise control algorithm design with human factors considerations. Adaptive cruise control (ACC) systems should be acceptable to drivers. In order to be acceptable to drivers, the ACC systems need to be designed based on the analysis of human driver driving behaviour. Manual driving characteristics are investigated using real-world driving test data. The goal of the control algorithm is to achieve naturalistic behaviour of the controlled vehicle that would feel natural to the human driver in normal driving situations and to achieve safe vehicle behaviour in severe braking situations in which large decelerations are necessary. A non-dimensional warning index and inverse time-to-collision are used to evaluate driving situations. A confusion matrix method based on natural driving data sets was used to tune control parameters in the proposed ACC system. Using a simulation and a validated vehicle simulator, vehicle following characteristics of the controlled vehicle are compared with real-world manual driving radar sensor data. It is shown that the proposed control strategy can provide with natural following performance similar to human manual driving in both high speed driving and low speed stop-and-go situations and can prevent the vehicle-to-vehicle distance from dropping to an unsafe level in a variety of driving conditions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: adaptive cruise control; clearance; human driver; manual driving; time gap; time-to-collision; vehicle

Document Type: Research Article

Affiliations: 1: Program in Automotive Engineering, Seoul National University, Seoul, Korea 2: School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea

Publication date: 2008-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more