Skip to main content

Exploiting autonomous corner modules to resolve force constraints in the tyre contact patch

Buy Article:

$60.90 plus tax (Refund Policy)


This paper presents a general force allocation strategy for over-actuated vehicles, utilising technologies where tyre forces can be more freely controlled than in conventional vehicles. For the purpose of illustration, this strategy has been applied and evaluated using a design proposal of an autonomous corner module (ACM) chassis during a transient open-loop response test. In this work, the vehicle has been forced to follow a trajectory, identical to the performance of a conventional front-steered vehicle during the manoeuvre studied. An optimisation process of tyre force allocation has been adopted along with tyre force constraints and cost functions to favour a desired solution. The vehicle response has been evaluated as open-loop, where tyre forces are shown to be allocated in a different manner than in conventional front-steered vehicles. A suggested approach for a control scheme of steering actuators is presented, where the actuator limitation is related to the lateral force possible. Finally, the force allocation strategy involves the ability to control vehicle slip independently from vehicle yaw rate. This opportunity has been adapted in the ACM vehicle in order to relax vehicle slip from the original trajectory description. In such circumstances, the ACMs demonstrate better utilisation of the adhesion potential.

Keywords: autonomous corner module; force allocation; steering actuator; tyre constraints; vehicle control; vehicle dynamics

Document Type: Research Article


Affiliations: 1: Chassis and Vehicle Dynamics, Volvo Car Corporation, Goteborg, SE, Sweden 2: KTH Vehicle Dynamics, Stockholm, SE, Sweden

Publication date: July 1, 2008


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more