Skip to main content

Base Dynamic Parameter Estimation of a MacPherson Suspension Mechanism

Buy Article:

$63.00 plus tax (Refund Policy)


Summary A MacPherson suspension mechanism is modeled as a two degrees of freedom spatial mechanism. Its dynamic response under two excitement forces is simulated with the motion equations in Euler Parameters with the off-the-center-of-mass body-fixed coordinates derived in this paper. Simulation results are sampled and input into a numerical estimation routine based on singular value decomposition (SVD). Accurate numerical estimation results are achieved. A set of base dynamic parameters in symbolic expressions is also derived from the numerical results utilizing the concepts of mass transfer and moments of inertia transfer. This makes it possible to apply the estimation results to any MacPherson suspension mechanism with the same joint configuration. The potential applications of the symbolic base dynamic parameters in suspension design are also considered.

Document Type: Research Article


Publication date: 2003-03-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more