Skip to main content

Dynamic Train-Track Interaction: Variability Attributable to Scatter in the Track Properties

Buy Article:

$55.00 plus tax (Refund Policy)

A numerical method to simulate vertical dynamic interaction between a rolling train and a railway track has been used to investigate the influence of stochastic properties of the track structure. A perturbation technique has been used to investigate the influence of the scatter in selected track properties. The train-track interaction problem has been numerically solved by use of an extended state-space vector approach in conjunction with a complex modal superposition for the whole track structure. All numerical simulations have been carried out in the time-domain with a moving mass model. Properties such as rail pad stiffness, ballast stiffness, dynamic ballast-subgrade mass and sleeper spacing have been studied. To obtain sufficient statistical information from track structures, full-scale measurements in the field and laboratory measurements have been carried out. The influence of scatter in the track properties on the maximum contact force between the rail and the wheel, the maximum magnitude of the vertical wheelset acceleration, and the maximum sleeper displacement have been studied. Mean values and standard deviations of these quantities have been calculated. The effects of the variation of the investigated track properties are discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2002-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more