Skip to main content

NUMERICAL SHAPE OPTIMIZATION FOR HIGH PERFORMANCE OF A HEAT SINK WITH PIN-FINS

Buy Article:

$55.00 plus tax (Refund Policy)

The design optimization of a 7 × 7 pin-fin heat sink is performed numerically. To achieve higher thermal performance of the heat sink, the thermal resistance at the junction of the chip and the heat sink and the overall pressure drop in the heat sink have to be minimized simultaneously. The fin height (h), fin width (w), and fan-to-heat sink distance (c) are chosen as the design variables, and the pressure drop (?P) and thermal resistance ( ? ja ) are adopted as the objective functions. To obtain the optimum design values, we used the finite-volume method for calculating the objective functions, the Broydon-Fletcher-Goldfarb-Shanno method for solving the unconstrained nonlinear optimization problem, and the weighting method for predicting the multiobjective problem. The results show that the optimum design variables for the weighting coefficient of 0.5 are as follows: w = 4.653 mm, h = 59.215 mm, and c = 2.669 mm. The objective functions corresponding to the optimal design are calculated as ?P = 6.82 Pa and ? ja  = 0.56 K/W. The Pareto solutions are also presented for various weighting coefficients, and they offer very useful data for designing a pin-fin heat sink.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: The Center of Innovative Design Optimization Technology, Hanyang University, Sungdong-gu, Seoul, 133-791, Korea

Publication date: 2004-11-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more