Role of Fresh Water Discharge from Rivers on Oceanic Features in the Northwestern Bay of Bengal

$61.74 plus tax (Refund Policy)

Buy Article:


The circulation of northwestern Bay of Bengal is modeled using a three-dimensional Princeton Ocean Model (POM). Orthogonal curvilinear grid is used to get a higher resolution along the coastal boundaries. Numerical simulations on climatological scale for premonsoon were compared with those with and without fresh water during monsoon season. The simulations for monsoon season without freshwater discharge at head Bay show intensification of the premonsoon features. The presence of lower SSTs and higher sea surface salinities as compared to premonsoon season along the coast substantiate this observation. The pole-ward moving East Indian Coastal Current (EICC) extends along-shore up to 20.5°N. Simulations with freshwater discharge for Monsoon season indicate that freshwater plume constitutes an equator-ward moving EICC branch opposing the pole-ward moving branch. The freshwater discharge modifies sea surface elevations along the northwestern coastal Bay of Bengal, in turn suppressing the coastal upwelling. Absence of freshwater plume imparts a significant change in the oceanic features in north western parts of Bay of Bengal.

Keywords: Bay of Bengal; fresh water discharge; numerical modeling; sea surface elevation; upwelling

Document Type: Research Article


Affiliations: 1: Institute of Instrumentation Engineering, Kurukshetra University, Haryana, India 2: Climatology and Hydrometeorology Division, Indian Institute of Tropical Meteorology, Maharashtra, India

Publication date: January 1, 2009

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more