Skip to main content

Jason Microwave Radiometer Performance and On-Orbit Calibration

Buy Article:

$60.90 plus tax (Refund Policy)


Results are presented from the on-orbit calibration of the Jason Microwave Radiometer (JMR). The JMR brightness temperatures (TBs) are calibrated at the hottest and coldest ends of the instrument's dynamic range, using Amazon rain forest and vicarious cold on-Earth theoretical brightness temperature references. The retrieved path delay values are validated using collocated TOPEX Microwave Radiometer and Radiosonde Observation path delay (PD) values. Offsets of 1–4 K in the JMR TBs and 8–12 mm in the JMR PDs, relative to TMR measurements, were initially observed. There were also initial TB offsets of 2 K between the satellite's yaw state. The calibration was adjusted by tuning coefficients in the antenna temperature calibration algorithm and the antenna pattern correction algorithm. The calibrated path delay values are demonstrated to have no significant bias or scale errors with consistent performance in all nonprecipitating weather conditions. The uncertainty of the individual path delay measurements is estimated to be 0.74 cm ± 0.15, which exceeds the mission goal of 1.2 cm RMS.

Keywords: JMR; TMR; calibration; microwave radiometer; path delay; satellite

Document Type: Research Article


Affiliations: 1: University of Michigan 2: Jet Propulsion Laboratory

Publication date: January 1, 2004

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more