Skip to main content

Impact of Ocean Mean Dynamic Topography on Satellite Data Assimilation

Buy Article:

$55.00 plus tax (Refund Policy)

The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements. The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow. Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: data assimilation; dynamic topography; ocean circulation; satellite altimetry

Document Type: Research Article

Affiliations: Laboratoire des Ecoulements Géophysiques et Industriels Grenoble France

Publication date: 2004-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more