Skip to main content

Constraint isomorphism and the generation of stochastic data

Buy Article:

$60.90 plus tax (Refund Policy)


We consider the problem of generating random data under constraints that are expressed in terms of different parameter sets. These constraints must be consistent between the parameter sets. However, this requirement of constraint consistency has to date not received much attention in the literature. The major objective of this article is to propose a formal concept called constraint isomorphism to detect and help avoid inconsistencies between the constraints. The method presented here can be used as a verification technique for random-data generation. As a case study, we illustrate our methodology on the total-tardiness problem: a NP-hard job scheduling problem. Since generating random data under constraints is an extremely common problem, especially in the simulation arena, the technique has a wide spectrum of potential applications.

Document Type: Research Article


Affiliations: Computer and Information Science Department, Cleveland State University, Cleveland, OH, 44115, USA,, Email:

Publication date: May 1, 2006


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more