Skip to main content

Further Theoretical Investigations for Laser Relative Intensity Noise with Fiber Nonlinearities and Higher Order Dispersion

Buy Article:

$71.00 + tax (Refund Policy)

In this article, we theoretically investigate relative intensity noise (RIN) in optical communication systems with fiber nonlinearities due to optical Kerr effects and higher order dispersion. The impact of modulation frequencies, launch power, and laser bias current on RIN has been illustrated. We show that RIN increases with modulating frequencies up to the resonance frequency and launch power, and decreases in the laser bias current. We also show that higher order dispersion terms have no impact on the RIN, but with first order dispersion compensation the higher order dispersion terms have significant impact at high modulating frequencies. The RIN with and without fiber nonlinearities is further investigated. It has been shown that the RIN with fiber nonlinearity is more than the RIN without nonlinearity and the effect of nonlinearity appears at higher modulation frequencies only.

Keywords: Kerr effect; RIN; higher order dispersion

Document Type: Research Article

Affiliations: Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology (Deemed University), Patiala, Punjab, India

Publication date: 01 July 2004

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content