Method for Exact Compensation of Voltage and Current Phasors Computed by Orthogonal Finite Impulse Response Filters During Frequency Variations

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

This article presents a generic method that fully compensates for the errors introduced by orthogonal finite impulse response filters (full-cycle discrete Fourier transform, half-cycle discrete Fourier transform, Cosine filter) in phasor computation during frequency variations in power systems. To accomplish this, the proposed method uses an accurate and easily calculated estimate of the local instantaneous frequency. The method is robust and precise and can be extended to deal satisfactorily with the effect of harmonics. Also, its implementation simplicity makes it attractive for real-time applications. Simulation results are provided to demonstrate the effectiveness of the proposed method.

Keywords: discrete Fourier transform; frequency variations; instantaneous frequency estimation; orthogonal finite impulse response filters; phasor computation; power system measurements; protective relaying

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/15325008.2010.528544

Affiliations: Electrical and Computer Engineering Department, National Technical University of Athens, Athens, Greece

Publication date: April 1, 2011

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more