Skip to main content

Hybridization of Artificial Immune Systems and Sequential Quadratic Programming for Dynamic Economic Dispatch

Buy Article:

$59.35 plus tax (Refund Policy)


Dynamic economic dispatch deals with the scheduling of online generator outputs with predicted load demands over a certain period of time so as to operate an electric power system most economically. This article proposes a hybrid methodology integrating artificial immune systems with sequential quadratic programming for solving the dynamic economic dispatch problem of generating units considering valve-point effects. This hybrid method incorporates artificial immune systems as a base level search, which can give good direction to the optimal region and sequential quadratic programming as a local search procedure, which is used to fine tune that region for achieving the final solution. Numerical results of a ten-unit system have been presented to demonstrate the performance and applicability of the proposed algorithm. The results obtained from the proposed algorithm are compared with those obtained from a hybrid of particle swarm optimization and sequential quadratic programming and a hybrid of evolutionary programming and sequential quadratic programming.

Keywords: artificial immune systems; dynamic economic dispatch; sequential quadratic programming

Document Type: Research Article


Affiliations: Department of Power Engineering, Jadavpur University, Kolkata, India

Publication date: September 1, 2009

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more