Skip to main content

Optimal Power Flow by Improved Evolutionary Programming

Buy Article:

$59.35 plus tax (Refund Policy)


This article proposes an improved evolutionary programming (IEP) for solving optimal power flow (OPF) with nonsmooth and nonconvex generator fuel cost curves. Initially, the whole population is divided into multiple subpopulations, which are used to perform the parallel search in divided solution space. IEP includes Gaussian and Cauchy mutation operators in different subpopulations to enhance the search diversity, selection operators with probabilistic updating strategy to avoid entrapping in local optimum, and reassignment operator for every subpopulation to exchange search information. The proposed IEP was tested on the IEEE 30 bus system with three different types of generator fuel cost curves. It is shown that IEP total generator fuel cost is less expensive than those of evolutionary programming, tabu search, hybrid tabu search and simulated annealing, and improved tabu search, leading to substantial generator fuel cost savings. Moreover, IEP can easily facilitate parallel implementation to reduce the computing time without sacrificing the quality of solution.

Keywords: improved evolutionary programming; nonsmooth generator fuel cost curve; optimal power flow; reassignment strategy

Document Type: Research Article


Affiliations: 1: Energy Field of Study School of Environment, Resources and Development Asian Institute of Technology, Pathumthani, Thailand 2: System Automation Division Power System Control and, Operation Department Provincial Electricity Authority, Bangkok, Thailand

Publication date: January 1, 2006

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more