Skip to main content

Computational Analysis of Swept Compressor Rotor Blades

Buy Article:

$71.00 + tax (Refund Policy)

Three-dimensional blading has been used in the process of turbomachine designs. To meet the need for efficient turbine blade designs, CFD predictions of a complex 3D flow field in turbine blade passages had been used. Because the numerous advantages of 3D CFD have been reported in the open literature, many industries already use 3D blading in their turbomachines. In addition, blade lean and sweep have been implemented to increase the blade row efficiency. Experimental studies have shown the advantages of these features. However, most of the experimental results combined other features together, which is difficult to determine the effects of individual features. The development of the CFD technique had made it possible to do three-dimensional turbulent flow analyses in a very short time. In this study, the numerical studies are presented to study the sweep effects of a transonic compressor airfoil. The focus of the paper is to investigate the sweep effects without changing the compressor blade's other features, i.e. keeping the blade outflow angle the same for all the cases. The purpose of the study is to enhance the understanding of the sweep in a transonic compressor rotor blade. The results show that the sweeps redistribute the flow, which may reduce the secondary flow loss depending on the baseline. It is shown that forward sweep reduces the tip loading in terms of static pressure coefficient.

Keywords: CFD; Compressor; Swept Blade

Document Type: Research Article

Affiliations: Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI, USA

Publication date: 01 November 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content