Skip to main content

Open Access A One-Dimensional Model for Particulate Deposition and Hydrocarbon Condensation in Exhaust Gas Recirculation Coolers

Cooled exhaust gas recirculation (EGR) is widely used in diesel engines to control engine out NOx (oxides of nitrogen) emissions. A portion of the exhaust gases is recirculated into the intake manifold of the engine after cooling it through a heat exchanger. EGR cooler heat exchangers, however, tend to lose efficiency and have increased pressure drop as deposit forms on the heat exchanger surface. This adversely affects the combustion process, engine durability, and emissions. In this study, a 1-D model was developed to simulate soot deposition, soot removal, and condensation of several hydrocarbon (HC) species in a circular tube with turbulent gas flow at constant wall temperature. The circular tube, which makes up the computational domain in the model, represents a single channel from any EGR cooler geometry. The model takes into account soot particle deposition due to thermophoresis, diffusion, turbulent impaction, and gravitational drift. However, thermophoresis was found to be the most dominant deposition mechanism for boundary conditions at which EGR coolers typically operate. Soot removal was modeled by considering a force balance between the drag and van der Waals forces. A lognormal distribution of particles was assumed at the tube inlet. The evolution of the particle distribution in the bulk flow along the tube as well as the mass distribution in the deposit layer on the tube walls is predicted by the model. Condensation of six HC species between C15-C24 alkanes was also modeled. Predictions made by the model are in reasonably good agreement with experimental data obtained from a laboratory reactor under the same boundary conditions. There are several assumptions and simplifications built into the model, which can be refined further to improve it.

Document Type: Research Article

Affiliations: 1: General Motors Research and Development Center, Warren,MI, USA 2: Institute of Thermodynamics and Thermal Engineering,University of Stuttgart, Stuttgart, Germany

Publication date: 01 February 2012

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content