Skip to main content

Open Access Characterization of a Newly Developed Aircraft-Based Laser Ablation Aerosol Mass Spectrometer (ALABAMA) and First Field Deployment in Urban Pollution Plumes over Paris During MEGAPOLI 2009

We present here the development and first field deployment of a novel Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is capable of measuring the chemical composition and size of individual ambient aerosol particles in the size range between 150 and 900 nm. The instrument uses a continuous wave 532 nm laser to size and detect the particles, a pulsed 266 nm laser to ablate and ionize the particles, and a bipolar, Z-shaped time-of-flight mass spectrometer to detect positive and negative ions. The ALABAMA fits into a 19”-aircraft rack of 150 cm height and has a total weight of 140 kg, thus currently being one of the smallest and lightest-weight instruments of its type. We present a detailed characterization of ALABAMA with respect to particle beam width, detection and ablation efficiency, and example mass spectra of different particle types. The first aircraft-based field mission was performed within the MEGAPOLI summer campaign in July 2009 around Paris, France, onboard an ATR42 aircraft. During 11 research flights, corresponding to a total measuring time of approximately 44 hours, ALABAMA measured 6502 single particle mass spectra. The mass spectra were classified into eight particle classes using distinctive markers for each particle type. The most abundant particle types contained organic and secondary inorganic compounds. The results further show that differences in the abundance of observed particle types between different air masses are very pronounced when comparing air masses arriving from the greater Paris area with air masses arriving from other directions.

Document Type: Research Article

Affiliations: 1: Particle Chemistry Department,Max Planck Institute for Chemistry, Mainz, Germany 2: Institute for Atmospheric and Environmental Sciences,Goethe-University Frankfurt am Main, Campus Riedberg, Altenhöferallee Frankfurt am Main, Germany 3: Institute for Atmospheric Physics,Johannes Gutenberg University, Mainz, Germany 4: LISA—Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR 7583, Faculté des Sciences,Université Paris Est, Créteil Cedex, France 5: SAFIRE—Service des Avions Français Instrumentés pour la Recherche en Environnement, Cugnaux, France

Publication date: 01 January 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content