If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Open Access Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth

Download Article:

Abstract:

Increasing the size of nanoaerosols may be beneficial in a number of applications, including filtration, particle size selection, and targeted respiratory drug delivery. A potential method to increase particle or droplet size is enhanced condensational growth (ECG), which involves combining the aerosol with saturated or supersaturated air. In this study, we characterize the ECG process in a model tubular geometry as a function of initial aerosol size (mean diameters-150, 560, and 900 nm) and relative humidity conditions using both in vitro experiments and numerical modeling. Relative humidities (99.8-104%) and temperatures (25-39°C) were evaluated that can safely be applied to either targeted respiratory drug delivery or personal aerosol filtration systems. For inlet saturated air temperatures above ambient conditions (30 and 39°C), the initial nanoaerosols grew to a size range of 1000-3000 nm (1-3 [image omitted]m) over a time period of 0.2 s. The numerical model results were generally consistent with the experimental findings and predicted final to initial diameter ratios of up to 8 after 0.2 s of humidity exposure and 14 at 1 s. Based on these observations, a respiratory drug delivery approach is suggested in which nanoaerosols in the size range of 500 nm are delivered in conjunction with a saturated or supersaturated air stream. The initial nanoaerosol size will ensure minimal deposition and loss in the mouth-throat region while condensational growth in the respiratory tract can be used to ensure maximal lung retention and to potentially target the site of deposition.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/02786821003749525

Affiliations: 1: Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA 2: Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA 3: Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA

Publication date: June 1, 2010

More about this publication?
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more