Skip to main content

Open Access Aerosol Retention in the Vicinity of a Breach in a Tube Bundle: An Experimental Investigation

Download Article:
This article summarizes the main results of a bench-scale program focused on experimentally assessing the aerosol retention near the tube breach in a tube bundle. The major variables investigated were particle nature (polydispersed TiO2 agglomerates vs. solid, monodisperse SiO2 spheres) and ReD (0.8-2.7· 105). In addition, comparisons to other data sets provided insights into the particle aerodynamic size effect on retention efficiency. Results showed that particle nature substantially affects aerosol retention in the tube bundle: mass retention efficiency was low for TiO2 agglomerates (less than 30%) whereas it was much higher for SiO2 particles (around 85%). Retention efficiency is also affected by ReD: its sensitivity was found to follow a log-normal behavior with a maximum retention attained at ReD near 1· 105. This evolution with ReD was similar for both types of compounds. Particle size also influences retention efficiency: the bigger the TiO2 agglomerates the lower retention efficiency (no data were available for SiO2). Among all these variables, particle nature was noted to have a prime importance for in-bundle retention, whereas ReD and particle aerodynamic size, although also affect retention efficiency, did not play such a key role. In light of the results, the presence of retention-inhibiting mechanisms such as fragmentation, resuspension or bouncing has been discussed. The data recorded will enhance the overall understanding of the governing mechanisms involved and will serve as a database against which compare model predictions. Nevertheless, further experimental data would be desirable to set up a sound database.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Nuclear Fission, Nuclear Safety Research Unit, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain

Publication date: 2010-05-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more