Skip to main content

Open Access Transport and Deposition of Angular Fibers in Turbulent Channel Flows

Download Article:
Transport and deposition of angular fibrous particles in turbulent channel flows were studied. The instantaneous fluid velocity field was generated by the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudo-spectral method. An angular fibers was assumed to consist of two elongated ellipsoids attached at their tips. For a dilute suspension of fibers, a one-way coupling assumption was used in that the flow carries the fibers, but the coupling effect of the fiber on the flow was neglected. The particle equations of motion used included the hydrodynamic forces and torques, the shear-induced lift and the gravitational forces. The hydrodynamic interactions of the high aspect ratio linkage were assumed to be negligibly small. Euler's four parameters (quaternions) were used for describing the time evolution of fiber orientations. Ensembles of fiber trajectories and orientations in turbulent channel flows were generated and statistically analyzed. The results were compared with those for spherical particles and straight fibers and their differences were discussed. Effects of fiber size, aspect ratio, fiber angle, turbulence near wall eddies, and various forces were studied. The DNS predictions were compared with experimental data for straight fibers and a proposed empirical equation model.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York, USA 2: Chemical Industry Institute of Toxicology Research, Triangle Park, North Carolina, USA

Publication date: 2007-05-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more