Skip to main content

Open Access Deactivation of SCR Catalysts by Exposure to Aerosol Particles of Potassium and Zinc Salts

Download Article:
 Download
(PDF)
 
Generated aerosol particle deposition has been applied in laboratory scale to induce deactivation of commercial Selective Catalytic Reduction (SCR) catalysts of V2O5-WO3/TiO2 monolithic type. The monolithic catalyst has been exposed to the generated submicrometer particle of inorganic salts, KCl, K2SO4, and ZnCl2 at 200°C in a tubular reactor. The generated particles have been deposited on the catalytic surfaces by utilization of an electrostatic field. Physical characterization of the generated aerosol particles were conducted by Scanning Mobility Particle Sizer (SMPS) and Electric Low Pressure Impactor (ELPI) with and without catalyst in order to investigate the magnitude of the particle deposition. Particle charge distribution was also evaluated with a Tandem Differential Mobility Analyser (TDMA) set up. SCR is the most common method to commercially reduce NOx emissions from combustion processes. Catalyst lifetime is important for process economics and extending catalyst life can allow future strengthened emission legislation and diminished NOx emissions. Verification of particle deposition has been conducted through comparison with catalyst samples exposed to commercial biomass combustion condition. The reactivity of both fresh and exposed catalyst samples as well as commercially used samples was examined in SCR reaction and the methods of deposition as well as the influence of the different salts on catalytic performance have been explored. Catalyst samples have been evaluated with Scanning Electron Microscopy (SEM) with respect to surface morphology of the catalyst material. The laboratory deactivated catalyst samples showed resemblance with the commercially exposed catalyst sample with respect to salts concentration and deposition of the salts particles. The obtained influence on catalyst activity was comparable with commercially obtained catalyst activity reductions at comparable potassium concentration levels.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: School of Technology and Design, Division of Bioenergy, Växjö University, Växjö, Sweden

Publication date: 2007-04-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more