Skip to main content

Open Access The Use of AFM and Surface Energy Measurements to Investigate Drug-Canister Material Interactions in a Model Pressurized Metered Dose Inhaler Formulation

Download Article:
(PDF 2444.4189453125 kb)
The aim of the project was to investigate the interactions between micronized salbutamol sulphate, budesonide, and formoterol fumarate dihydrate and different canister surfaces materials (Aluminium, anodized aluminium, perfluoroalkoxy, fluorinated ethylene propylene—polyether sulphone, and polytetrafluoroethylene) used in pressurized metered dose inhalers (pMDIs). The surface component approach for polar and apolar interfacial interactions was used to predict the adhesion behavior of micronized drugs with the inner surfaces of pMDI canisters. This was achieved using a combination of in situ colloid probe atomic force microscopy (AFM) measurements and theoretical treatment of the surface free energy measurements, via a contact angle–based technique of the interacting surfaces. All three drugs exhibited similar dispersive surface energy free values. A greater variation was, however, found in the polar component of the surface free energy measurements. These results were also reflected in the dispersive and polar components of the canister materials. Moreover, the linear relationship between the work of adhesion and AFM measured adhesion was shown to be correlated on the polar contributions of the surface free energies of the interacting materials. AFM measurements indicated that salbutamol sulphate was found to have the strongest adhesive forces with respect to the canister surface materials while budesonide and formoterol fumarate dihydrate appeared to have similar adhesive characteristics. The present study suggests that investigations into the design and characterization of pMDI formulations would benefit from considerations of the polar contribution of the surface free energy and relative work of adhesion of the drug and various components of a pMDI system.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Advanced Drug Delivery Group, Faculty of Pharmacy (A15), University of Sydney, Sydney, Australia 2: AstraZeneca R&D Charnwood, Loughborough, United Kingdom 3: Pharmaceutical Surface Science Research Group, Department of Pharmacy, University of Bath, Bath, United Kingdom

Publication date: 2006-04-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more