Skip to main content

Open Access Deposition of Particles by a Confined Impinging Jet onto a Flat Surface at Re = 10 4

Download Article:
(PDF 1536.0703125 kb)


An axisymmetric turbulent air jet flow (with vertical and downward orientation) laden with fluorescent solid particles was impinged normally onto a flat surface. The particle deposition efficiency and distribution on the flat surface were measured experimentally using fluorometry and imaging techniques. The fluorescent particles (5.0 ┬Ám diameter) were dispersed by a nebulizer and injected in a stream of compressed air, resulting in a steady flow (Q = 111 L/min). A round nozzle was used to generate a jet characterized by a Reynolds number of Re = 10 4 , based on the nozzle diameter (D = 15.0 mm) and nozzle exit velocity (u = 10.5 m/s). Three dimensionless distances from the nozzle's exit to the impaction surface, L/D = 2, 4, and 6, were investigated. It was observed that although having similar total deposition efficiencies (16.5–17.8%), shorter nozzle to surface distances (L/D = 2 and 4) show a more pronounced ring-like radial deposition pattern around the stagnation point. These shorter distances also exhibit significantly lower particle deposition near the stagnation point when compared to the longer distance (L/D = 6). Indeed, in moving through L/D = 2, 4, and 6, peak deposition density values of 254, 347, and 685 particles/mm 2 shift through radii of 2.1 D, 0.8 D, and 0.1 D, respectively. In addition to the experiments, numerical simulation was also performed, which showed that the particle deposition was dominated by a turbulent dispersion mechanism for L/D = 2, with inertial impaction becoming more important for the L/D = 4 and 6 cases.

Document Type: Research Article


Affiliations: 1: Carleton University, Department of Mechanical and Aerospace Engineering, Ottawa, Ontario, Canada 2: University of Alberta, Department of Mechanical Engineering, Edmonton, Alberta, Canada

Publication date: 2006-03-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more