Skip to main content

Open Access Effect of Angle of Attack on the Performance of an Airborne Counterflow Virtual Impactor

Download Article:
 Download
(PDF 2,166.5 kb)
 

Abstract:

A three-dimensional model has been developed within the framework of the commercial computational fluid dynamics program, FLUENT®, to investigate the collection efficiency of an airborne counterflow virtual impactor (CVI). The model assumes steady-state, isothermal, compressible, and turbulent flow. Particle trajectories are computed based on the Lagrangian discrete phase model (DPM). In addition to predicting the effects of flight velocity and counterflow rate on the particle collection efficiency, as do prior models, the model quantifies the effect of flight attack angle on the particle collection efficiency. With an angle of attack as small as 5 ^ , the CVI collection efficiency drastically degrades at large particle sizes, and only particles with intermediate sizes are collected. Smaller particles do not have sufficient inertia to fight the counterflow, and larger particles tend to impact the CVI inner walls and are lost to the CVI walls. The modeling results show that the alignment between the free stream flow and the CVI inlet is critical to the performance of the CVI.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/027868290964838

Affiliations: 1: Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 2: Department of Chemical Engineering, California Institute of Technology, Pasadena, California

Publication date: June 1, 2005

More about this publication?
tandf/uast/2005/00000039/00000006/art00002
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more