Skip to main content

Open Access Size Distribution Evolution of Fine Aerosols Due to Intercoagulation with Coarse Aerosols

Download Article:
(PDF 237.1337890625 kb)


Controlling the emission of submicron particles of toxic metals in a combustion system poses a challenge. One possible mechanism for removing these fine particles is through intercoagulation with coarse particles. A bimodal lognormal model was applied to investigate the impact of intercoagulation rate on the size distributions of fine-mode aerosols. Fine-mode particle removal time was found to depend strongly on the number concentration of coarse-mode particles, but it was independent on the number concentration of fine-mode particles. An increase of geometric standard deviation of fine-mode particles from 1 to 1.6 significantly increased the dimensionless removal time 27 times. On the contrary, an increase of the deviation of coarse-mode particles in the same range only decreased 3% of the dimensionless removal time. The variation of geometric mean size ratio, meanwhile, had only insignificant effects on dimensionless removal time. For a constant mass concentration, removal time decreased as geometric standard deviation narrowed and mean size of coarse mode decreased. Fine-mode particles ultimately approached monodisperse when the dominant mechanism was intercoagulation; meanwhile, coarse-mode particles approached the asymptotic shape because intracoagulation was the dominant mechanism. The results show that on a constant mass basis, monodisperse coarse-mode particles with a high number concentration are the optimal condition for enhanced removal of fine-mode particles through intercoagulation.

Document Type: Research Article


Affiliations: Aerosol & Particulate Research Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA

Publication date: 2005-04-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more