Skip to main content

Open Access Numerical Simulation and Validation of Dilute Gas-Particle Flow Over a Backward-Facing Step

Download Article:
(PDF 435.9 kb)


The physical characteristics of dilute gas–particle flows over a backward-facing step geometry are investigated. An investigation is performed to assess the performance of two computational approaches—the Lagrangian particle-tracking model and Eulerian two-fluid model—to predict the particle phase flow parameters under the influence of different particle inertia. Particles with corresponding diameters of 1 µ (small-size particles) and 70 µ (large-size particles) are simulated under the flow condition of two Reynolds numbers (based on the step height): Re = 15000 and Re = 64000, for which the model predictions are compared against benchmark experimental measurements. Among the various turbulence models evaluated, the RNG ? -e and realizable ?-e models provided better agreement with the experimental data for the range of particles considered. The Eulerian approach used in this study combines an overlapped technique with a particle–wall collision model to better present the particle–wall momentum transfer than traditional Eulerian models. In comparing to the Lagrangian and Eulerian approaches for particle flow predictions, the latter was shown to yield closer agreement with the measured values.

Document Type: Research Article


Affiliations: 1: School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Vic, Australia 2: Australian Nuclear Science and Technology Organisation (ANSTO), Menai, NSW, Australia

Publication date: April 1, 2005

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more