Skip to main content

Open Access Chase Studies of Particulate Emissions from in-use New York City Vehicles

Download Article:
(PDF 1,288.5 kb)


Emissions from motor vehicles are a significant source of fine particulate matter (PM) and gaseous pollutants in urban environments. Few studies have characterized both gaseous and PM emissions from individual in-use vehicles under real-world driving conditions. Here we describe chase vehicle studies in which on-road emissions from individual vehicles were measured in real time within seconds of their emission. This work uses an Aerodyne aerosol mass spectrometer (AMS) to provide size-resolved and chemically resolved characterization of the nonrefractory portion of the emitted PM; refractory materials such as elemental carbon (EC) were not measured in this study. The AMS, together with other gas-phase and particle instrumentation, was deployed on the Aerodyne Research Inc. (ARI) mobile laboratory, which was used to“chase”the target vehicles. Tailpipe emission indices of the targeted vehicles were obtained by referencing the measured nonrefractory particulate mass loading to the instantaneous CO2measured simultaneously in the plume. During these studies, nonrefractory PM1.0(NRPM1) emission indices for a representative fraction of the New York City Metropolitan Transit Authority (MTA) bus fleet were determined. Diesel bus emissions ranged from 0.10 g NRPM1/kg fuel to 0.23 g NRPM1/kg, depending on the type of engine used by the bus. The average NRPM1emission index of diesel-powered buses using Continuously Regenerating Technology (CRTTM) trap systems was 0.052 g NRPM1/kg fuel. Buses fueled by compressed natural gas (CNG) had an average emission index of 0.034 g NRPM1/kg Fuel. The mass spectra of the nonrefractory diesel aerosol components measured by the AMS were dominated by lubricating oil spectral signatures. Mass-weighted size distributions of the particles in fresh diesel exhaust plumes peak at vacuum aerodynamic diameters around 90 nm with a typical full width at half maximum of 60 nm.

Document Type: Research Article


Affiliations: 1: Center for Aerosol and Cloud Chemistry and Center for Atmospheric and Environmental Chemistry Aerodyne Research Inc., Billerica, Massachusetts 2: University of California, Berkeley, California 3: University of Colorado, Boulder, Colorado 4: University of Manchester, Manchester, United Kingdom 5: Department of Environmental Conservation, Albany, New York 6: Atmospheric Sciences Research Center, State University of New York, New York

Publication date: June 1, 2004

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more