Skip to main content

Energy landscapes: calculating pathways and rates

Buy Article:

$55.00 plus tax (Refund Policy)

The stationary points of a potential energy surface provide a convenient framework for coarse-graining calculations of thermodynamics and kinetics. Thermodynamic properties can be extracted from a database of local minima using the superposition approach, where the total partition function is written as a sum over the contributions from each minimum. To analyse kinetics, we must also consider the transition states that link individual local minima, and evaluate rate constants for the corresponding elementary rearrangements. For small molecules the assignment of separate thermodynamic quantities, such as free energies, to individual isomers, and the notion of isomerisation rates between these structures, is usually straightforward. However, for larger systems the experimental states of interest generally correspond to sets of local minima with some common feature, such as a particular structural motif. This review focuses upon the discrete path sampling approach to obtaining phenomenological two-state rate constants between ensembles of local minima that are distinguished by suitable order parameters. Examples are discussed for atomic and molecular clusters, and for two peptides.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK

Publication date: 2006-01-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more