Skip to main content

Line-based rational function model for high-resolution satellite imagery

Buy Article:

$63.00 plus tax (Refund Policy)


The object-to-image transformation of high-resolution satellite images often involves a rational functional model (RFM). Traditionally, RFM uses point features to obtain the transformation coefficients. Since control lines offer greater flexibility than control points, this study proposes a new RFM approach based on linear features. The proposed methods include direct RFM and bias-compensated RFM using control lines. The former obtains the rational polynomial coefficients (RPCs) directly from control lines, whereas the latter uses sensor-orientated RPCs and control lines to determine compensated coefficients. The line-based RFMs include vector and parametric line representations. The experiments in this study analysed the effects of line number, orientation, and length using simulation and real data. The real data combined three-dimensional building models and high-resolution satellite images, such as IKONOS and QuickBird images. Experimental results show that the proposed algorithms can achieve pixel-level accuracy.

Document Type: Research Article


Affiliations: Department of Civil Engineering,National Chiao Tung University, Hsinchu,30010, Taiwan

Publication date: 2013-02-20

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more