Skip to main content

Sub-pixel mapping of remotely sensed imagery with hybrid intra- and inter-pixel dependence

Buy Article:

$59.35 plus tax (Refund Policy)

Abstract:

Sub-pixel mapping of remotely sensed imagery is often performed by assuming that land cover is spatially dependent both within and between image pixels. Intra- and inter-pixel dependencies are two widely used approaches to represent different land-cover spatial dependencies at present. However, merely using intra- or inter-pixel dependence alone often fails to fully describe land-cover spatial dependence, making current sub-pixel mapping models defective. A more reasonable object for sub-pixel mapping is maximizing both intra- and inter-pixel dependencies simultaneously instead of using only one of them. In this article, the differences between intra- and inter-pixel dependencies are discussed theoretically, and a novel sub-pixel mapping model aiming to maximize hybrid intra- and inter-pixel dependence is proposed. In the proposed model, spatial dependence is formulated as a weighted sum of intra-pixel dependence and inter-pixel dependence to satisfy both intra- and inter-pixel dependencies. By application to artificial and synthetic images, the proposed model was evaluated both visually and quantitatively by comparing with three representative sub-pixel mapping algorithms: the pixel swapping algorithm, the sub-pixel/pixel attraction algorithm, and the pixel swapping initialized with sub-pixel/pixel attraction algorithm. The results showed increased accuracy of the proposed algorithm when compared with these traditional sub-pixel mapping algorithms.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431161.2012.705441

Affiliations: Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China

Publication date: January 10, 2013

More about this publication?
tandf/tres/2013/00000034/00000001/art00021
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more