Skip to main content

A stepwise cloud shadow detection approach combining geometry determination and SVM classification for MODIS data

Buy Article:

$60.90 plus tax (Refund Policy)


The identification of cloud shadow pixels is important for land and cloud–atmosphere remote-sensing applications. In this study, a stepwise cloud shadow detection approach for Moderate Resolution Imaging Spectroradiometer (MODIS) 1┬ákm reflectance data, which combines a geometry-based method, a threshold-based automated training data extraction, and a support vector machine (SVM) classification-based spectral detection process, is presented. An extended potential cloud shadow mask is generated according to the satellite and solar geometry and the positions of clouds. An automated training sample data-extraction process, which is based on the reflectance characteristics of cloud shadows, is performed to acquire training samples. Accurate cloud shadow pixels are then confirmed by the SVM classification algorithm. The advantage of this approach is that only reflectance data, geolocation data, and a cloud mask are required; no further cloud or atmospheric information, such as cloud-top height, cloud type, or aerosol information are needed in the workflow. The reduced input requirements benefit rapid-response remote-sensing applications such as flood detection and monitoring. Experimental results were compared with the spectral-based cloud shadow detection scheme, which was employed in the MOD35 product. The comparisons indicate that the new approach detects cloud shadows better than the results generated by using spectral threshold tests only.

Document Type: Research Article


Affiliations: 1: Department of Geography and Geoinformation Science, College of Science,George Mason University, Fairfax,VA,22030, USA 2: Center for Satellite Application and Research,NOAA/NESDIS, Camp Spring,MD,20748, USA

Publication date: January 10, 2013

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more