Skip to main content

Large-scale leaf area index inversion algorithms from high-resolution airborne imagery

Buy Article:

$59.35 plus tax (Refund Policy)

Abstract:

Large-scale leaf area index (LAI) inversion algorithms were developed to determine the LAI of a forest located in Gatineau Park, Canada, using high-resolution colour and colour infrared (CIR) digital airborne imagery. The algorithms are parameter-independent and developed based on the principles of optical field instruments for gap fraction measurements. Cloud-free colour and CIR images were acquired on 21 August 2007 with 35 and 60 cm nominal ground pixel size, respectively. Normalized Difference Vegetation Index (NDVI), maximum likelihood and object-oriented classifications, and principal component analysis (PCA) methods were applied to calculate the mono-directional gap fraction. Subsequently, LAI was derived from inversion and compared with ground measurements made in 54 plots of 20 by 20┬ám using hemispherical photography between 10 and 20 August 2007. There was high inter-correlation (the Pearson correlation coefficient, R > 0.5, p < 0.01) among LAI values inverted using the classifications and PCA methods, but neither were highly correlated with LAI inverted from the NDVI method. LAI inverted from the NDVI-based gap fraction significantly correlated with ground-measured LAI (R = 0.63, root mean square error (RMSE) = 0.52), while LAI inverted from the classification and PCA-derived gap fraction showed poor correlation with ground-measured LAI. Consequently, the NDVI method was used to invert LAI for the whole study area and produce a 20‐m resolution LAI map.

Document Type: Research Article

DOI: http://dx.doi.org/10.1080/01431161003801302

Affiliations: 1: Department of Geography,University of Helsinki, PO Box 64FIN-00014Helsinki, Finland 2: Department of Geography and Environmental Studies,Carleton University, 1125 Colonel By DriveOttawaON, CanadaK1S 5B6

Publication date: July 20, 2011

More about this publication?
tandf/tres/2011/00000032/00000014/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more